Methane Combustion over Zeolite-Supported Palladium-Based Catalysts

Author:

Tao Jinxiong1,Liu Yuxi1,Deng Jiguang1,Jing Lin1,Hou Zhiquan1,Wei Lu1,Wang Zhiwei1,Dai Hongxing1ORCID

Affiliation:

1. Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

Abstract

The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water at low temperatures. However, the catalytic activities of the conventional supported palladium catalysts (e.g., Pd/Al2O3 and Pd/ZrO2) are easy to decrease or the two catalysts can even be deactivated under actual harsh reaction conditions (high temperatures, steam- and sulfur dioxide-containing atmospheres, etc.). Recently, noble metal catalysts supported on zeolites with ordered pores and good thermal stability have attracted much attention. This review article summarizes the recent progress on the development and characteristics of zeolite-supported noble metal catalysts for the combustion of methane. The effects of framework structures, silica/alumina ratios, acidity, doping of alkali metals or transition metals, particle sizes and distributions, and their locations of/in the zeolites on methane combustion activity are discussed. The importance of developing high-performance catalysts under realistic operation conditions is highlighted. In addition, the related research work on catalytic methane combustion in the future is also envisioned.

Funder

State’s Key Project of Research and Development Plan

the National Natural Science Foundation Committee of China—Liaoning Provincial People’s Government Joint Fund

Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3