Affiliation:
1. Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Abstract
The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water at low temperatures. However, the catalytic activities of the conventional supported palladium catalysts (e.g., Pd/Al2O3 and Pd/ZrO2) are easy to decrease or the two catalysts can even be deactivated under actual harsh reaction conditions (high temperatures, steam- and sulfur dioxide-containing atmospheres, etc.). Recently, noble metal catalysts supported on zeolites with ordered pores and good thermal stability have attracted much attention. This review article summarizes the recent progress on the development and characteristics of zeolite-supported noble metal catalysts for the combustion of methane. The effects of framework structures, silica/alumina ratios, acidity, doping of alkali metals or transition metals, particle sizes and distributions, and their locations of/in the zeolites on methane combustion activity are discussed. The importance of developing high-performance catalysts under realistic operation conditions is highlighted. In addition, the related research work on catalytic methane combustion in the future is also envisioned.
Funder
State’s Key Project of Research and Development Plan
the National Natural Science Foundation Committee of China—Liaoning Provincial People’s Government Joint Fund
Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献