Effect of TiO2 on Pd/La2O3-CeO2-Al2O3 Systems during Catalytic Oxidation of Methane in the Presence of H2O and SO2

Author:

Velinova Ralitsa1ORCID,Todorova Silviya2ORCID,Kovacheva Daniela1,Kolev Hristo2ORCID,Karakirova Yordanka2ORCID,Markov Pavel1,Tumbalova Katerina1,Ivanov Georgi1,Naydenov Anton1ORCID

Affiliation:

1. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

2. Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

Abstract

New results on the effect of TiO2 on Pd/La2O3-CeO2-Al2O3 systems for catalytic oxidation of methane in the presence of H2O and SO2 have been received. Low-temperature N2-adsorption, XRD, SEM, HRTEM, XPS, EPR and FTIR techniques were used to characterize the catalyst. The presence of Ce3+ on the catalytic surface and in the volume near the lantana was revealed by EPR and XPS. After aging, the following changes are observed: (i) agglomeration of the Pd-clusters (from 8 nm to 12 nm); (ii) transformation of part of the TiO2 from anatase to larger particles of rutile; and (iii)—the increase in PdO/Pd—ratio above its optimum. The modification by Ti of the La2O3-CeO2-Al2O3 system leads to higher resistance towards the presence of SO2 most likely due to the prevailing formation of unstable surface sulfites instead of thermally stable sulfates. Based on kinetic model calculations, the reaction pathway over the Pd/La2O3-CeO2-TiO2-Al2O3 catalyst follows the Mars–van Krevelen mechanism. For evaluation of the possible practical application of the obtained material, a sample of Pd/La2O3-CeO2-TiO2-Al2O3, supported on rolled aluminum-containing stainless steel (Aluchrom VDM®), was prepared and tested. Methane oxidation in an industrial-scale monolithic reactor was simulated using a two-dimensional heterogeneous reactor model.

Funder

European Network on Materials for Clean Technologies

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3