Affiliation:
1. Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Sino-Platinum Metals Chemical (Yunnan) Co., Ltd., Kunming 650500, China
Abstract
The development of superior low-temperature catalytic performance and inexpensive catalysts for the removal of volatile organic compounds (VOCs) is crucial for their industrial application. Herein, CuO/Ce0.6Zr0.4O2 catalysts calcinated at different temperatures (Cu/CZ-X, X represented calcination temperature) were prepared and used to eliminate toluene. It can be found that Cu/CZ-550 presented the highest low-temperature catalytic activity, with the lowest temperature (220 °C) 50% conversion of toluene, the highest normalized reaction rate (3.1 × 10−5 mol·g−1·s−1 at 180 °C) and the lowest apparent activation energy value (86.3 ± 4.7 kJ·mol−1). Systematically, the surface properties analysis results showed that the optimum redox property, abundant oxygen vacancies, and plentiful surface Ce3+ species over Cu/CZ-550 were associated with the strong interaction between Cu and support could significantly favor the adsorption and activation of toluene, thus resulting in its superior catalytic performance.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献