Ce–Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin

Author:

Rouf Hifza,Ramli AnitaORCID,Anuar Nur Akila Syakida Idayu Khairul,Yunus Normawati Mohamad

Abstract

AbstractSince petroleum became depleted, rapid attention has been devoted to renewable energy sources such as lignocellulosic biomass to produce useful chemicals for industry (for instance vanillin). Three primary components of lignocellulose are lignin, cellulose, and hemicellulose. This paper uses microwave-assisted technology to oxidize the kenaf stalk (lignocellulosic biomass) and extract lignin to produce vanillin. Catalysts with variable acid–base and redox properties are essential for the mentioned effective conversion, for this reason, CeO2–CA, ZrO2–CA, and CeZrO2–CA catalysts were synthesized. The citrate complexation method was used for the catalyst synthesis and the physicochemical characteristics were analyzed by XRD, FTIR, FE–SEM, TEM, BET, and TPO. The characterization results demonstrated that CeZrO2–CA shows the smallest sized crystallites with a large specific surface area among the other chosen catalysts. For vanillin production, the effect of reaction temperature, reaction time, and catalyst loading was studied. It was observed that compared to other catalysts, CeZrO2–CA produced the highest vanillin yield of 9.90% for kenaf stalk for 5 wt% of CeZrO2–CA at 160 °C for 30 min. Furthermore, vanillin production using extracted lignin is studied keeping CeZrO2–CA as a catalyst and with the same operating parameters, which yielded 14.3% of vanillin. Afterward, the change in yield with respect to pH is also presented. Finally, the recyclability of catalyst is also studied, which showed that it has a strong metal support and greater stability which may give industrial applications a significant boost. Graphical Abstract

Funder

Malaysian Ministry of Higher Education under the Fundamental Research Grant Scheme

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3