Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst

Author:

Duan Yajing1,Sun Huijuan1,Du Hui2,Lu Wencai1

Affiliation:

1. College of Physics, Qingdao University, Qingdao 266071, China

2. College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao 266071, China

Abstract

The Hcp-Fe7C3 phase has attracted more attention due to the high catalytic activity in Fischer–Tropsch synthesis (FTS) reactions. In this work, the adsorption and activation of CO on a Co-doped hcp-Fe7C3 catalyst were investigated by density functional theory (DFT) in order to understand the effect of Co doping on the initial step of FTS reactions on iron-based catalysts. Different Co-doped hcp-Fe7C3 001 and 11¯0 surfaces were constructed, and the CO adsorption configurations were studied. The calculated results show that the structure of the 001 surface remains basically unchanged after doping with Co atoms, while the replacement of Fe or C atoms on 11¯0 surfaces with Co atoms has a significant impact on the surface structure. The top sites on the doped Co atoms of hcp-Fe7C3 are disadvantages for the CO adsorption, whereas the T, 2F, or 3F sites around the doped Co atoms are beneficial for promoting the adsorption of CO. The CO direct dissociation pathways on the four types of Co-doped hcp-Fe7C3 001 surfaces are exothermic, while the H-assisted dissociation pathways of CO are endothermic. The H-assisted activation via HCO on the 3F1 site of the 2Co2-doped hcp-Fe7C3 001 surface shows the lowest energy barrier of 1.96 eV. For the Co-doped hcp-Fe7C3 11¯0 surfaces, the H-assisted activation via HCO is the preferred activation pathway for CO on the Co-doped surfaces with the energy barrier of approximately 1.30 eV.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3