A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals

Author:

Jamaati Maryam1ORCID,Torkashvand Mostafa2ORCID,Sarabadani Tafreshi Saeedeh23ORCID,de Leeuw Nora H.34ORCID

Affiliation:

1. Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

2. Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Avenue, Tehran 15916-34311, Iran

3. School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

4. Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands

Abstract

The increasing demand for clean fuels and sustainable products has attracted much interest in the development of active and selective catalysts for CO conversion to desirable products. This review maps the theoretical progress of the different facets of most commercial catalysts, including Co, Fe, Ni, Rh, and Ru. All relevant elementary steps involving CO dissociation and hydrogenation and their dependence on surface structure, surface coverage, temperature, and pressure are considered. The dominant Fischer–Tropsch synthesis mechanism is also explored, including the sensitivity to the structure of H-assisted CO dissociation and direct CO dissociation. Low-coordinated step sites are shown to enhance catalytic activity and suppress methane formation. The hydrogen adsorption and CO dissociation mechanisms are highly dependent on the surface coverage, in which hydrogen adsorption increases, and the CO insertion mechanism becomes more favorable at high coverages. It is revealed that the chain-growth probability and product selectivity are affected by the type of catalyst and its structure as well as the applied temperature and pressure.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3