Synthesis and Characterization of Ca-ALG/MgO/Ag Nanocomposite Beads for Catalytic Degradation of Direct Red Dye

Author:

Albalwi Hanan A.

Abstract

Increased water pollution due to the tremendous increase of dye-containing effluent is still a serious problem which, in turn, adversely affects aquatic life and, consequently, the balance of our ecosystem. The aim of this research was to investigate whether Ca-ALG/MgO/Ag nanocomposite beads successfully prepared from calcium alginate hydrogels with MgO (Ca-ALG/MgO) doped with Ag nanoparticles (Ag NPs) caused effective degradation of Direct Red 83 dye. The formation of nanocomposite beads was confirmed by X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Dynamic Light Scattering (DLS), and Energy Dispersive X-ray Analysis (EDX). The results from the EDX analysis proved that both MgO and Ag nanoparticles within the alginate beads network were present. This study also examines the effects of various operating parameters, such as the reducing agent, time of reaction, the concentration of the dye solution, and the catalyst dosage, which were examined and studied carefully to find the optimum degradation conditions. The kinetics and isothermal study revealed that the degradation process using Ca-ALG/MgO/Ag nanocomposite beads as a catalyst in the presence of sodium borohydride (NaBH4) as a reducing agent was the best fit for the pseudo-first-order model and the Temkin isotherm model. The results indicated that the optimum dosage of Ca-ALG/MgO/Ag was 0.3 g for a dye concentration of 50 mg/L, and equilibrium of the degradation process was attained at 340 min. Accordingly, it could be stated that the catalyst, Ca-ALG/MgO/Ag nanocomposite beads, is considered efficient for the degradation of Direct Red 83 dye. The degradation efficiency reached 95% approximately. Furthermore, after four runs of reuse, Ca-ALG/MgO/Ag nanocomposite beads exhibited excellent performance and long-term stability.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference38 articles.

1. Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads;Semeraro;Int. J. Agric. Environ. Biotechnol.,2017

2. Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: Kinetic and isotherm studies, Sustain;Benkaddour;Chem. Pharm.,2018

3. Slama, H., Bouket, A.C., Pourhassan, Z., Alenezi, F.N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golinska, P., and Belbahr, L. (2021). Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci., 11.

4. Effects of pH, Temperature and Agitation on the Decolourisation of Dyes by Laccase-Containing Enzyme Preparation from Pleurotus sajor-caju;Bettin;Braz. Arch. Biol. Technol.,2019

5. Versatile Ag2O and ZnO nanomaterials fabricated via annealed Ag-PMOS and ZnO-PMOS: An efficient photocatalysis tool for azo dyes;Shahzad;J. Mol. Liq.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3