Fabrication of magnesium oxide–calcium alginate hydrogel for scaffolding yttrium and neodymium from aqueous solutions

Author:

Ghaly M.,Masry B. A.,Abu Elgoud E. M.

Abstract

AbstractIn this research, the possibility of using sustainable nano-MgO/Ca-alginate beads for efficient sorption of some rare earth metal ions such as neodymium(III) and yttrium(III) from an aqueous acidic solution was explored. The nano-MgO/Ca-alginate beads adsorbent was characterized before and after sorption of Nd(III) and Y(III) using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) techniques. Batch sorption parameters were investigated, such as contact time, initial metal ion concentration, and adsorbent dose (V/m). The calculated experimental results showed that the suitable selected sorption conditions were carried out using 100 mg/L of Nd(III) and Y(III) with nano MgO/Ca-alginate beads (contact time = 90 min, pH = 2, V/m = 0.05 L/g). The maximum sorption capacity of 0.1 g of nano MgO/Ca-alginate was found to be 7.85 mg/g and 5.60 mg/g for Nd(III) and Y(III), respectively. The desorption of Nd(III) and Y(III) from the loaded nano MgO/Ca-alginate was achieved with 1.0 M sulfamic acid and found to be 51.0% and 44.2%, respectively. The calculated thermodynamic parameters for the nano MgO/Ca-alginate/Nd/Y system show that the positive charge of ΔHo confirmed the endothermic nature of the sorption process, ΔSo (positive) indicates an increase in reaction system disordering, and ΔGo (negative) indicates a spontaneous process. These kinetic results indicate that the sorption process of Nd(III) and Y(III) on nano MgO/Ca-alginate beads is performed by the chemisorption process.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3