Abstract
Gene–environment interaction (G×E) studies are one of the most important solutions for understanding the “missing heritability” problem in genome-wide association studies (GWAS). Although many statistical methods have been proposed for detecting and identifying G×E, most employ single nucleotide polymorphism (SNP)-level analysis. In this study, we propose a new statistical method, Hierarchical structural CoMponent analysis of gene-based Gene–Environment interactions (HisCoM-G×E). HisCoM-G×E is based on the hierarchical structural relationship among all SNPs within a gene, and can accommodate all possible SNP-level effects into a single latent variable, by imposing a ridge penalty, and thus more efficiently takes into account the latent interaction term of G×E. The performance of the proposed method was evaluated in simulation studies, and we applied the proposed method to investigate gene–alcohol intake interactions affecting systolic blood pressure (SBP), using samples from the Korea Associated REsource (KARE) consortium data.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献