The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase

Author:

Huang Ming-Shyan,Hsu Ya-Ling,Yeh I-Jeng,Liu Kuan-Ting,Yen Meng-ChiORCID

Abstract

RNA-based therapeutics are considered as novel treatments for human diseases. Our previous study demonstrated that treatment with short-hairpin RNA against Ido1 (IDO shRNA) suppresses tumor growth, detects Th1-bias immune responses, and elevates expression of tryptophan transfer RNA (tRNATrp) in total splenocytes. In addition, depletion of Ly6g+ neutrophils attenuates the effect of IDO shRNA. The aim of this study was to investigate the regulatory network and the expression profile of tRNAs and other non-coding RNAs in IDO shRNA-treated spleens. The total splenocytes and magnetic bead-enriched splenic neutrophils were collected from the lung tumor bearing mice, which were treated with IDO shRNA or scramble IDO shRNA, and the collected cells were subsequently subjected to RNA sequencing. The gene ontology analysis revealed the different enrichment pathways in total splenocytes and splenic neutrophils. Furthermore, the expression of tRNA genes was identified and validated. Six isoacceptors of tRNA, with different expression patterns between total splenocytes and splenic neutrophils, were observed. In summary, our findings not only revealed novel biological processes in IDO shRNA-treated total splenocytes and splenic neutrophils, but the identified tRNAs and other non-coding RNAs may contribute to developing a novel biomarker gene set for evaluating the clinical efficiency of RNA-based cancer immunotherapies.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3