Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via Computational Fluid Dynamics

Author:

Noël Florian,Serra Christophe,Le Calvé Stéphane

Abstract

Following the fast development of microfluidics over the last decade, the need for methods for mixing two gases in flow at an overall flow rate ranging from 1 to 100 NmL·min−1 with programmable mixing ratios has been quickly increasing in many fields of application, especially in the calibration of analytical devices such as air pollution sensors. This work investigates numerically the mixing of pure gas pulses at flow rates in the range 1–100 NmL·min−1 in a newly designed multi-stage and modular micromixer composed of 4 buffer tanks of 300 µL each per stage. Results indicate that, for a 1 s pulse of pure gas (formaldehyde) followed by a 9 s pulse of pure carrier gas (air), that is a pulses ratio of 1/10, an effective mixing up to 94–96% can be readily obtained at the exit of the micromixer. This is achieved in less than 20 s for any flow rate ranging from 1 to 100 NmL·min−1 simply by adjusting the number of stages, 1 to 16 respectively. By using an already diluted gas bottle containing 100 ppm of a given compound in an inert gas same as the carrier gas, concentrations ranging from 10 to 90 ppm should be obtained by adjusting the pulses ratio between 1/10 and 9/10 respectively.

Funder

Association Nationale de la Recherche et de la Technologie

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference37 articles.

1. A fast gas-mixing system for breath-to-breath respiratory control studies

2. An automatic system for accurate preparation of gas mixtures

3. Continuous Flow Type Gas Blending Facility Used for Autonomous and System Diving—ScienceDirect https://www.sciencedirect.com/science/article/pii/S1876610217311748

4. Optimizing Gas Mixtures for Modified Atmosphere Packaging of Fresh King Salmon (Oncorhynchus tshawytscha)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3