Experimental Evaluations of the Impact of an Additive Oxidizing Electronic Air Cleaner on Particles and Gases

Author:

Zeng Yicheng,Laguerre AurélieORCID,Gall Elliott T.ORCID,Heidarinejad MohammadORCID,Stephens BrentORCID

Abstract

Electronic air cleaning (EAC) technologies have garnered significant attention for use in buildings. Many EAC technologies rely on the addition of reactive constituents to indoor air to react with gas-phase compounds, enhance particle deposition, and/or inactivate microorganisms. However, limited data are available on the efficacy of many EAC technologies and their potential to form chemical byproducts during operation. Here we experimentally evaluate the indoor air quality impacts, specifically targeting particles and gases but not microbial constituents, of a commercially available additive oxidizing EAC that generates positive and negative ions and hydrogen peroxide (H2O2). Tests were conducted in a large unoccupied test chamber in Chicago, IL and an unoccupied laboratory in Portland, OR under a combination of natural conditions (i.e., without pollutant injection) and perturbation conditions (i.e., with pollutant injection and decay). A combination of integrated and time-resolved measurements was used across both test locations. Chamber tests at lower airflow rates demonstrated that operation of the EAC: (i) had no discernible impact on particle concentrations or particle loss rates, with estimated clean air delivery rates (CADRs) for various particle measures less than ±10 m3/h, (ii) was associated with apparent decreases in some volatile organic compounds (VOCs) and increases in other VOCs and aldehydes, especially acetaldehyde, although a combination of high propagated uncertainty, limitations in test methods (e.g., lack of replicates), and variability between repeated tests limit what quantitative conclusions can be drawn regarding gas-phase organics; (iii) did generate H2O2, assessed using a crude measure, and (iv) did not generate ozone (O3). Laboratory tests at higher airflow rates, which involved injection and decay of particles and a single VOC (limonene), both simultaneously and separately, demonstrated that: (i) pollutant loss rates for both particles and limonene were slightly lower with the EAC on compared to off, yielding slightly negative pollutant removal efficiencies (albeit largely within propagated uncertainty) and (ii) there was a change in observed concentrations of one potential limonene degradation product, m/z 59 (putatively identified as acetone), with steady-state levels increasing from 10 ppb (air cleaner off) to 15 ppb (air cleaner on). No increases or decreases beyond measurement uncertainty were observed for other analyzed gaseous limonene degradation products. Overall, both chamber and laboratory tests demonstrated negligible effectiveness of this device at the test conditions described herein for removing particles and mixed results for VOCs, including decreases in some VOCs, no discernible differences in other VOCs, and apparent increases in other compounds, especially lower molecular weight aldehydes including acetaldehyde.

Funder

Parents Unite to Fund Independent Research on Electronic Air Cleaners

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3