Diallyl Trisulfide (DATS) Suppresses AGE-Induced Cardiomyocyte Apoptosis by Targeting ROS-Mediated PKCδ Activation

Author:

Hsieh Dennis Jine-Yuan,Ng Shang-Chuan,Zeng Ren-You,Padma Viswanadha Vijaya,Huang Chih-YangORCID,Kuo Wei-WenORCID

Abstract

Chronic high-glucose exposure results in the production of advanced glycation end-products (AGEs) leading to reactive oxygen species (ROS) generation, which contributes to the development of diabetic cardiomyopathy. PKCδ activation leading to ROS production and mitochondrial dysfunction involved in AGE-induced cardiomyocyte apoptosis was reported in our previous study. Diallyl trisulfide (DATS) is a natural cytoprotective compound under various stress conditions. In this study, the cardioprotective effect of DATS against rat streptozotocin (STZ)-induced diabetic mellitus (DM) and AGE-induced H9c2 cardiomyoblast cell/neonatal rat ventricular myocyte (NRVM) damage was assessed. We observed that DATS treatment led to a dose-dependent increase in cell viability and decreased levels of ROS, inhibition of PKCδ activation, and recuded apoptosis-related proteins. Most importantly, DATS reduced PKCδ mitochondrial translocation induced by AGE. However, apoptosis was not inhibited by DATS in cells transfected with PKCδ-wild type (WT). Inhibition of PKCδ by PKCδ-kinase-deficient (KD) or rottlerin not only inhibited cardiac PKCδ activation but also attenuated cardiac cell apoptosis. Interestingly, overexpression of PKCδ-WT plasmids reversed the inhibitory effects of DATS on PKCδ activation and apoptosis in cardiac cells exposed to AGE, indicating that DATS may inhibit AGE-induced apoptosis by downregulating PKCδ activation. Similar results were observed in AGE-induced NRVM cells and STZ-treated DM rats following DATS administration. Taken together, our results suggested that DATS reduced AGE-induced cardiomyocyte apoptosis by eliminating ROS and downstream PKCδ signaling, suggesting that DATS has potential in diabetic cardiomyopathy (DCM) treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3