Abstract
Cilobradine (CIL, DK-AH269), an inhibitor of hyperpolarization-activated cation current (Ih), has been observed to possess pro-arrhythmic properties. Whether and how CIL is capable of perturbing different types of membrane ionic currents existing in electrically excitable cells, however, is incompletely understood. In this study, we intended to examine possible modifications by it or other structurally similar compounds of ionic currents in pituitary tumor (GH3) cells and in heart-derived H9c2 cells. The standard whole-cell voltage-clamp technique was performed to examine the effect of CIL on ionic currents. GH3-cell exposure to CIL suppressed the density of hyperpolarization-evoked Ih in a concentration-dependent manner with an effective IC50 of 3.38 μM. Apart from its increase in the activation time constant of Ih during long-lasting hyperpolarization, the presence of CIL (3 μM) distinctly shifted the steady-state activation curve of Ih triggered by a 2-s conditioning pulse to a hyperpolarizing direction by 10 mV. As the impedance-frequency relation of Ih was studied, its presence raised the impedance magnitude at the resonance frequency induced by chirp voltage. CIL also suppressed delayed-rectifier K+ current (IK(DR)) followed by the accelerated inactivation time course of this current, with effective IC50 (measured at late IK(DR)) or KD value of 3.54 or 3.77 μM, respectively. As the CIL concentration increased 1 to 3 μM, the inactivation curve of IK(DR) elicited by 1- or 10-s conditioning pulses was shifted to a hyperpolarizing potential by approximately 10 mV, and the recovery of IK(DR) inactivation during its presence was prolonged. The peak Na+ current (INa) during brief depolarization was resistant to being sensitive to the presence of CIL, yet to be either decreased by subsequent addition of A-803467 or enhanced by that of tefluthrin. In cardiac H9c2 cells, unlike the CIL effect, the addition of either ivabradine or zatebradine mildly led to a lowering in IK(DR) amplitude with no conceivable change in the inactivation time course of the current. Taken together, the compound like CIL, which was tailored to block hyperpolarization-activated cation (HCN) channels effectively, was also capable of altering the amplitude and gating of IK(DR), thereby influencing the functional activities of electrically excitable cells, such as GH3 cells.
Funder
Ministry of Science and Technology
National Cheng Kung University
China Medical University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献