OMC-SLIO: Online Multiple Calibrations Spinning LiDAR Inertial Odometry

Author:

Wang ShuangORCID,Zhang Hua,Wang Guijin

Abstract

Light detection and ranging (LiDAR) is often combined with an inertial measurement unit (IMU) to get the LiDAR inertial odometry (LIO) for robot localization and mapping. In order to apply LIO efficiently and non-specialistically, self-calibration LIO is a hot research topic in the related community. Spinning LiDAR (SLiDAR), which uses an additional rotating mechanism to spin a common LiDAR and scan the surrounding environment, achieves a large field of view (FoV) with low cost. Unlike common LiDAR, in addition to the calibration between the IMU and the LiDAR, the self-calibration odometer for SLiDAR must also consider the mechanism calibration between the rotating mechanism and the LiDAR. However, existing self-calibration LIO methods require the LiDAR to be rigidly attached to the IMU and do not take the mechanism calibration into account, which cannot be applied to the SLiDAR. In this paper, we propose firstly a novel self-calibration odometry scheme for SLiDAR, named the online multiple calibration inertial odometer (OMC-SLIO) method, which allows online estimation of multiple extrinsic parameters among the LiDAR, rotating mechanism and IMU, as well as the odometer state. Specially, considering that the rotating and static parts of the motor encoder inside the SLiDAR are rigidly connected to the LiDAR and IMU respectively, we formulate the calibration within the SLiDAR as two separate sets of calibrations: the mechanism calibration between the LiDAR and the rotating part of the motor encoder and the sensor calibration between the static part of the motor encoder and the IMU. Based on such a SLiDAR calibration formulation, we can construct a well-defined kinematic model from the LiDAR to the IMU with the angular information from the motor encoder. Based on the kinematic model, a two-stage motion compensation method is presented to eliminate the point cloud distortion resulting from LiDAR spinning and platform motion. Furthermore, the mechanism and sensor calibration as well as the odometer state are wrapped in a measurement model and estimated via an error-state iterative extended Kalman filter (ESIEKF). Experimental results show that our OMC-SLIO is effective and attains excellent performance.

Funder

The Science and Technology Plan Project of the Sichuan Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time;Palieri;IEEE RA-L.,2021

2. SegMap: Segment-based mapping and localization using data-driven descriptors;Cramariuc;Int. J. Robot. Res.,2020

3. A Joint Optimization Approach of LiDAR-Camera Fusion for Accurate Dense 3-D Reconstructions;Zhen;IEEE RA-L.,2019

4. Zhen, W., Zeng, S., and Soberer, S. (June, January 29). Robust localization and localizability estimation with a rotating laser scanner. Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore.

5. LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing;Karimi;IEEE RA-L.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR-based SLAM for robotic mapping: state of the art and new frontiers;Industrial Robot: the international journal of robotics research and application;2024-01-02

2. Rotating 3D laser mapping system for Multi-rotor drones;2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC);2023-08-11

3. Hierarchical Vision Navigation System for Quadruped Robots with Foothold Adaptation Learning;Sensors;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3