Dynamic Top Height Growth Models for Eight Native Tree Species in a Cool-Temperate Region in Northeast China

Author:

Hipler Sandra-Maria,Spiecker Heinrich,Wu Shuirong

Abstract

In this study, we developed dynamic top height growth models for the eight important Chinese tree species Larix gmelinii var. principis-rupprechtii, Pinus tabuliformis Carr., Pinus sylvestris var. mongolica Litv., Picea asperata Mast., Quercus mongolica Fisch. ex Ledeb, Betula platyphylla Suk., Betula dahurica Pall. and Populus davidiana Dode based on age-height relationships. For this purpose, commonly growth data from long-term observations of permanent experimental plots are used, which ideally cover all development stages from stand establishment to final harvest. As such data were not available in the research area of Hebei Province in Northeast China, we used stem analysis data as well as tree height and annual shoot length measurements. The dataset consisted of 72 stands, 233 dominant trees and 10,195 observations of stem discs and annual shoot length measurements. Five dynamic base-age invariant top height growth models were derived from four base models with the generalized algebraic difference approach and fitted to our age-height data using nested regression techniques. According to biological plausibility and model accuracy the Chapman–Richards model showed the best performance for Picea asperata. This selected model accounted for 99% of the total variance in age-height relationship with average absolute bias of 0.2322 m, root mean square error of 0.3337 m and Radj2 of 0.9979, respectively. The distribution of the residuals was scattered around 0 and without visible trends, indicating that the fitness of the models was good. All developed models are able to generate top height growth curves representing the analyzed height growth data and can be utilized for predicting height growth on the base of current height and age of dominant trees. Additionally, they are the base for calculating the development of other relevant stand attributes such as basal area and volume growth. The determination of potential site productivity by the use of top height growth curves is a practical and convenient method for a simplified presentation of complex growth processes in stands and helps to create growth models, which facilitate implementing sustainable forest management practices in Mulan Forest.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3