An Approach to Estimate Individual Tree Ages Based on Time Series Diameter Data—A Test Case for Three Subtropical Tree Species in China

Author:

Zhang Yiru,Li Haikui,Zhang Xiaohong,Lei Yuancai,Huang Jinjin,Liu Xiaotong

Abstract

Accurate knowledge of individual tree ages is critical for forestry and ecological research. However, previous methods suffer from flaws such as tree damage, low efficiency, or ignoring autocorrelation among residuals. In this paper, an approach for estimating the ages of individual trees is proposed based on the diameter series of Cinnamomum camphora (Cinnamomum camphora (L.) Presl), Schima superba (Schima superba Gardn. et Champ.), and Liquidambar formosana (Liquidambar formosana Hance). Diameter series were obtained by stem analysis. Panel data contains more information, more variability, and more efficiency than pure time series data or cross-sectional data, which is why diameter series at stump and breast heights were chosen to form the panel data. After choosing a base growth equation, a constraint was added to the equation to improve stability. The difference method was used to reduce autocorrelation and the parameter classification method was used to improve model suitability. Finally, the diameter increment equation of parameter a-classification was developed. The mean errors of estimated ages based on the panel data at breast height for C. camphora, S. superba, and L. formosana were 0.47, 2.46, and −0.56 years and the root mean square errors were 2.04, 3.15 and 2.47 years, respectively. For C. camphora and L. formosana, the estimated accuracy based on the panel data was higher at breast height than at stump height. This approach to estimating individual tree ages is highly accurate and reliable, and provides a feasible way to obtain tree ages by field measurement.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3