Bacteria and Cyanobacteria Inactivation Using UV-C, UV-C/H2O2, and Solar/H2O2 Processes: A Comparative Study

Author:

Choi Jin-Hyuk1ORCID,Shin Jeongmin2,Yoon Soyeong3,Jang Taesoon3,Lee Jooyoung3ORCID,Kim Hyun-Kyung45ORCID,Park Jeong-Ann13ORCID

Affiliation:

1. Department of Integrated Energy and Infra system, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

3. Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

4. Department of Battery Convergence Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

5. Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

Effective disinfection processes have been investigated to provide pathogen-free drinking water. Due to growing concern about the potential negative effects of cyanobacteria in portable water, their treatment has gained more attention recently. This study aims to compare the inhibition efficiencies of Gram-negative bacteria (Escherichia coli; E. coli), Gram-positive bacteria (Bacillus subtilis; B. subtilis), and cyanobacteria (Microcystis aeruginosa; M. aeruginosa) using UV-C and solar irradiation, and their combination process with H2O2. Over 6 log removal value (LRV) of E. coli and B. subtilis was achieved within 1 min of UV-C irradiation (0.76 ± 0.02 mW/cm2). The solar and solar/H2O2 (50 mg/L) processes effectively reduced (>99%) both bacteria after 20 min. E. coli was more sensitive to hydroxyl radicals (•OH) compared to the B. subtilis due to a different cell wall structure, resulting in a 0.18–0.62 higher LRV than B. subtilis. However, solar-based processes did not effectively inhibit M. aeruginosa (>52.23%). The UV-C/H2O2 (50 mg/L) process showed the highest inhibition rate for M. aeruginosa (77.83%) due to the generation of •OH, leading to oxidative damage to cells. Additionally, chlorophyll-a (Chl-a) was measured to indicate cell lysis of M. aeruginosa. The removal rate of Chl-a extracted by viable M. aeruginosa was higher using the UV-C process (93.03%) rather than the UV-C/H2O2 process (80.95%), because UV-C irradiation could be most effective in damaging Chl-a.

Funder

National Research Foundation of Korea

Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3