Communication-Based Train Control with Dynamic Headway Based on Trajectory Prediction

Author:

He YijuanORCID,Lv JidongORCID,Tang Tao

Abstract

Rail transit plays a significant role in the operation of an efficient and effective urban public transportation system. Safety and capacity are some of the most crucial objectives in railway operations. The communication-based train control (CBTC) system is a continuous and automatic train control system that realizes constant and high-capacity train ground two-way communication. In this study, a dynamic headway model of the ‘softwall’ moving-block approach is proposed for CBTC to increase the track capacity and improve dispatching efficiency based on the train trajectory prediction. For this precise trajectory prediction task, we introduce a hybrid trajectory prediction model to combine Long Short-term memory (LSTM) and Kalman Filter (KF) to extract the train’s local data features and learn the long-term dependencies, respectively. Then we present a dynamic headway model to maximize the train headway and reduce the track distance. The leading trains’ information is used to construct the iterative learning control strategy, and the predicted trajectory is input into the algorithm of the headway model. We use a simulation model of the rail network in Chengdu to demonstrate the effectiveness of our proposed approach. The results show the Mean Absolute Error (MAE) of the predicted trajectory retreated to 93.97 cm and reductions in operation headway of at least 64.33% under the dynamic headway model versus the traditional moving-block model.

Funder

Beijing National Science Foundation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barzilai Borwein Incremental Grey Polynomial Regression for train delay prediction;Expert Systems;2024-06-12

2. Review of Wheel Wear Damage In Railway Vehicle;Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal);2024-04-01

3. A Review of Wheel Wear Damage in Railway Vehicle;Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal);2024-03-31

4. Empirical Exploration of Aircraft Headway Evolution Characteristics in Terminal Maneuvering Area;2024 3rd International Conference on Big Data, Information and Computer Network (BDICN);2024-01-12

5. A Novel Approach for Train Tracking in Virtual Coupling Based on Soft Actor-Critic;Actuators;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3