Design, Modeling, Testing, and Control of a Novel Fully Flexure-Based Displacement Reduction Mechanism Driven by Voice Coil Motor

Author:

Chen Yunzhuang,Lai Leijie

Abstract

This paper presents a flexure-based displacement reduction mechanism driven by a voice coil motor to improve the motion resolution and eliminate the hysteresis nonlinearity of the traditional piezo-actuated micropositioning/nanopositioning stages. The mechanism is composed of three groups of compound bridge-type displacement reduction mechanisms, which adopt distributed-compliance rectangular beams to reduce the concentration of stress and improve the dynamic performance of the mechanism. The symmetrical distribution of the structure can eliminate the parasitic displacement of the mechanism and avoid the bending moment and lateral stress applied to the voice coil motor. Firstly, the analytical model of the mechanism is obtained by the stiffness matrix method. The theoretical displacement reduction ratio, input stiffness, and natural frequency of the displacement reduction mechanism are obtained by solving the analytical model. Then, through the static analysis and modal analysis of the mechanism with the Ansys software, the accuracy of the analytical model is verified, and the experimental prototype is also constructed for performance tests. The results show that the maximum stroke of the mechanism is 197.43 μm with motion resolution of 40 nm. The natural frequency is 291 Hz, and the input stiffness is 28.50 N/mm. Finally, the trajectory tracking experiment is carried out to verify the positioning performance of the mechanism. The experimental results show that the designed feedback controller has good stability, and the introduction of the feedforward controller and disturbance observer can greatly reduce the tracking errors.

Funder

Natural Science Foundation of Shanghai and the State Key Laboratory of Mechanical System and Vibration

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on SMA motor modelling and control algorithm for optical image stabilization;Microsystem Technologies;2024-09-12

2. Design and Implementation of Bulk Feeders Using Voice Coil Motors;Actuators;2024-07-26

3. A Novel Compliant Rotation Reduction Mechanism and its Application in Micro-Rotation Manipulation;2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3