Developing the Raster Big Data Benchmark: A Comparison of Raster Analysis on Big Data Platforms

Author:

Haynes DavidORCID,Mitchell PhilipORCID,Shook Eric

Abstract

Technologies around the world produce and interact with geospatial data instantaneously, from mobile web applications to satellite imagery that is collected and processed across the globe daily. Big raster data allow researchers to integrate and uncover new knowledge about geospatial patterns and processes. However, we are at a critical moment, as we have an ever-growing number of big data platforms that are being co-opted to support spatial analysis. A gap in the literature is the lack of a robust assessment comparing the efficiency of raster data analysis on big data platforms. This research begins to address this issue by establishing a raster data benchmark that employs freely accessible datasets to provide a comprehensive performance evaluation and comparison of raster operations on big data platforms. The benchmark is critical for evaluating the performance of spatial operations on big data platforms. The benchmarking datasets and operations are applied to three big data platforms. We report computing times and performance bottlenecks so that GIScientists can make informed choices regarding the performance of each platform. Each platform is evaluated for five raster operations: pixel count, reclassification, raster add, focal averaging, and zonal statistics using three raster different datasets.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference36 articles.

1. Big Data and cloud computing: innovation opportunities and challenges

2. Array Databases. Geographic Information Science Technologies Body of Knowledgehttps://gistbok.ucgis.org/bok-topics/array-databases

3. Storing and Querying Large-Scale Spatio-Temporal Graphs with High-Throughput Edge Insertions;Ding;arXiv,2019

4. A High-Performance Distributed Relational Database System for Scalable OLAP Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3