Abstract
Technologies around the world produce and interact with geospatial data instantaneously, from mobile web applications to satellite imagery that is collected and processed across the globe daily. Big raster data allow researchers to integrate and uncover new knowledge about geospatial patterns and processes. However, we are at a critical moment, as we have an ever-growing number of big data platforms that are being co-opted to support spatial analysis. A gap in the literature is the lack of a robust assessment comparing the efficiency of raster data analysis on big data platforms. This research begins to address this issue by establishing a raster data benchmark that employs freely accessible datasets to provide a comprehensive performance evaluation and comparison of raster operations on big data platforms. The benchmark is critical for evaluating the performance of spatial operations on big data platforms. The benchmarking datasets and operations are applied to three big data platforms. We report computing times and performance bottlenecks so that GIScientists can make informed choices regarding the performance of each platform. Each platform is evaluated for five raster operations: pixel count, reclassification, raster add, focal averaging, and zonal statistics using three raster different datasets.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Reference36 articles.
1. Big Data and cloud computing: innovation opportunities and challenges
2. Array Databases. Geographic Information Science Technologies Body of Knowledgehttps://gistbok.ucgis.org/bok-topics/array-databases
3. Storing and Querying Large-Scale Spatio-Temporal Graphs with High-Throughput Edge Insertions;Ding;arXiv,2019
4. A High-Performance Distributed Relational Database System for Scalable OLAP Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献