A Survey on Spatio-temporal Data Analytics Systems

Author:

Alam Md Mahbub1ORCID,Torgo Luis1,Bifet Albert2

Affiliation:

1. Dalhousie University, Halifax, NS, Canada

2. The University of Waikato, Hamilton, New Zealand

Abstract

Due to the surge of spatio-temporal data volume, the popularity of location-based services and applications, and the importance of extracted knowledge from spatio-temporal data to solve a wide range of real-world problems, a plethora of research and development work has been done in the area of spatial and spatio-temporal data analytics in the past decade. The main goal of existing works was to develop algorithms and technologies to capture, store, manage, analyze, and visualize spatial or spatio-temporal data. The researchers have contributed either by adding spatio-temporal support with existing systems, by developing a new system from scratch, or by implementing algorithms for processing spatio-temporal data. The existing ecosystem of spatial and spatio-temporal data analytics systems can be categorized into three groups, (1) spatial databases (SQL and NoSQL), (2) big spatial data processing infrastructures, and (3) programming languages and GIS software. Since existing surveys mostly investigated infrastructures for processing big spatial data, this survey has explored the whole ecosystem of spatial and spatio-temporal analytics. This survey also portrays the importance and future of spatial and spatio-temporal data analytics.

Funder

Canada Research Chairs program

NSERC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference284 articles.

1. Evaluation of spatial analysis application for urban emergency management

2. David W. Adler. 2001. DB2 spatial extender - Spatial data within the RDBMS. In VLDB. Morgan Kaufmann Publishers Inc., San Francisco, CA, 687–690.

3. Hadoop-GIS: A high performance spatial data warehousing system over MapReduce;Aji Ablimit;VLDB,2013

4. Md Mahbub Alam. 2018. Parallel and In-Memory Big Spatial Data Processing Systems and Benchmarking. Master’s thesis. Fredericton, NB, Canada.

5. A Performance Study of Big Spatial Data Systems

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3