Dynamic Pseudo-Label Generation for Weakly Supervised Object Detection in Remote Sensing Images

Author:

Wang Hui,Li Hao,Qian Wanli,Diao Wenhui,Zhao Liangjin,Zhang Jinghua,Zhang Daobing

Abstract

In recent years, fully supervised object detection methods in remote sensing images with good performance have been developed. However, this approach requires a large number of instance-level annotated samples that are relatively expensive to acquire. Therefore, weakly supervised learning using only image-level annotations has attracted much attention. Most of the weakly supervised object detection methods are based on multi-instance learning methods, and their performance depends on the process of scoring the candidate region proposals during training. In this process, the use of only image-level labels for supervision usually cannot obtain optimal results due to the lack of location information of the object. To address the above problem, a dynamic sample pseudo-label generation framework is proposed to generate pseudo-labels for each proposal without additional annotations. First, we propose the pseudo-label generation algorithm (PLG) to generate the category labels of the proposal by using the localization information of the object. Specifically, we propose to use the pixel average of the object’s localization map in the proposal as the proposal category confidence and calculate the pseudo-label by comparing the proposal category confidence with the preset threshold. In addition, an effective adaptive threshold selection strategy is designed to eliminate the effect of different category shape differences in computing sample pseudo-labels. Comparative experiments on the NWPU VHR-10 dataset demonstrate that our method can significantly improve the detection performance compared to existing methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Going deeper with convolutions

2. SSD: Single Shot MultiBox Detector;Liu,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3