Processing Missile-Borne SAR Data by Using Cartesian Factorized Back Projection Algorithm Integrated with Data-Driven Motion Compensation

Author:

Bao MinORCID,Zhou Song,Xing Mengdao

Abstract

Due to the independence of azimuth-invariant assumption of an echo signal, time-domain algorithms have significant performance advantages for missile-borne synthetic aperture radar (SAR) focusing with curve moving trajectory. The Cartesian factorized back projection (CFBP) algorithm is a newly proposed fast time-domain implementation which can avoid massive interpolations to improve the computational efficiency. However, it is difficult to combine effective and efficient data-driven motion compensation (MOCO) for achieving high focusing performance. In this paper, a new data-driven MOCO algorithm is developed under the CFBP framework to deal with the motion error problem for missile-borne SAR application. In the algorithm, spectrum compression is implemented after a CFBP process, and the SAR images are transformed into the spectrum-compressed domain. Then, the analytical image spectrum is obtained by utilizing wavenumber decomposition based on which the property of motion induced error is carefully investigated. With the analytical image spectrum, it is revealed that the echoes from different scattering points are aligned in the same spectrum range and the phase error becomes a spatial invariant component after spectrum compression. Based on the spectrum-compressed domain, an effective and efficient data-driven MOCO algorithm is accordingly developed for accurate error estimation and compensation. Both simulations of missile-borne SAR and raw data experiment from maneuvering highly-squint airborne SAR are provided and analyzed, which show high focusing performance of the proposed algorithm.

Funder

National Natural Science Foundation of China

Shaanxi Innovative Talents Promotion Plan-Science and Technology Innovation Team

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3