Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio

Author:

Liu YangORCID

Abstract

Dense unconventional shale gas extraction activities have occurred in Appalachian Ohio since 2010 and they have caused various landcover changes and forest fragmentation issues. This research investigated the most recent boom of unconventional shale gas extraction activities and their impacts on the landcover changes and forest structural changes in the Muskingum River Watershed in Appalachian Ohio. Triple-temporal high-resolution natural-color aerial images from 2006 to 2017 and a group of ancillary geographic information system (GIS) data were first used to digitize the landcover changes due to the recent boom of these unconventional shale gas extraction activities. Geographic object-based image analysis (GEOBIA) was then employed to form forest patches as image objects and to accurately quantify the forest connectivity. Lastly, the initial and updated forest image objects were used to quantify the loss of core forest as the two-dimensional (2D) forest structural changes, and initial and updated canopy height models (CHMs) derived from airborne light detection and ranging (LiDAR) point clouds were used to quantify the loss of forest volume as three-dimensional (3D) forest structural changes. The results indicate a consistent format but uneven spatiotemporal development of these unconventional shale gas extraction activities. Dense unconventional shale gas extraction activities formed two apparent hotspots. Two-thirds of the well pad facilities and half of the pipeline right-of-way (ROW) corridors were constructed during the raising phase of the boom. At the end of the boom, significant forest fragmentation already occurred in both hotspots of these active unconventional shale gas extraction activities, and the areal loss of core forest reached up to 14.60% in the densest concentrated regions of these activities. These results call for attention to the ecological studies targeted on the forest fragmentation in the Muskingum River Watershed and the broader Appalachian Ohio regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. Annual Energy Outlook 2018,2018

2. Improved Oil Recovery by Surfactant and Polymer Flooding;Shah,2012

3. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States

4. Oil and Gas 101: An Overview of Oil and Gas Upstream Activities and Using EPA’s Nonpoint Oil and Gas Emission Estimation Tool for the 2014 NEI;Snyder,2014

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3