Collocating pipelines to minimize fragmentation: evaluating ecological costs of a shale gas mitigation practice

Author:

Langlois Lillie A.12ORCID,Brenner Stephen J.13,Brittingham Margaret C.1

Affiliation:

1. Department of Ecosystem Science and Management The Pennsylvania State University 117 Forest Resources Building University Park PA 16802 USA

2. Department of Forestry and Environmental Conservation Clemson University Clemson SC 29634 USA

3. Audubon Nebraska, Nebraska Gering NE 69341 USA

Abstract

AbstractShale gas development occurs in forests of the Appalachian Basin within breeding habitat for forest songbirds. Development requires linear infrastructure (e.g., pipelines, gas access roads) that fragments habitat and reduces core forest. Collocation is a mitigation practice that sites new pipelines adjacent to existing surface disturbance such as forest roads; it reduces core forest loss but may have associated ecological costs, defined as negative effects on native species and ecosystems. We conducted a paired sampling design between forest roads and collocated pipelines (expanded gas access roads collocated with pipelines) to evaluate ecological costs to forest songbirds in 2013 in Pennsylvania, USA. We surveyed 4 focal songbird species: 3 territorial species that varied in habitat requirements and the non‐territorial brown‐headed cowbird (Molothrus ater), an obligate brood parasite. We used spot mapping to survey focal species within linear corridors and the adjacent mature forest. Territory density of forest interior ovenbirds (Seiurus aurocapilla) was significantly lower on collocated pipelines (5.1 fewer territories per 10 ha) compared to forest road sites. We found no effect of collocation on territory density for the early successional species, eastern towhee (Pipilo erythrophthalmus) and chestnut‐sided warbler (Setophaga pensylvanica). Territories of all 3 territorial focal species crossed collocated pipeline sites less frequently than forest roads (ovenbird: 16%, eastern towhee: 14%, chestnut‐sided warbler: 31%) and the barrier effect increased with increasing corridor width. In contrast, brown‐headed cowbird abundance was 15 times greater at collocated pipelines compared to forest roads, suggesting that wider gas corridors provide enhanced access routes for cowbirds. Our study indicates the expansion of forest roads to collocated pipelines exacerbates the negative ecological effects already present with the existing road including increased edge avoidance by a forest interior species, greater barrier effects for all 3 territorial forest songbirds, and increased access for brown‐headed cowbirds into core forest. We support collocation as a mitigation strategy but emphasize restricting overall corridor width to reduce the additional ecological costs associated with this practice.

Funder

Pennsylvania Game Commission

Heinz Endowments

National Institute of Food and Agriculture

College of Agricultural Sciences, Pennsylvania State University

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3