Phase Imbalance Optimization in Interference Linear Displacement Sensor with Surface Gratings

Author:

Odinokov Sergey,Shishova Maria,Kovalev Michael,Zherdev Alexander,Lushnikov Dmitrii

Abstract

In interferential linear displacement sensors, accurate information about the position of the reading head is calculated out of a pair of quadrature (sine and cosine) signals. In double grating interference schemes, diffraction gratings combine the function of beam splitters and phase retardation devices. Specifically, the reference diffraction grating is located in the reading head and regulates the phase shifts in diffraction orders. Measurement diffraction grating moves along with the object and provides correspondence to the displacement coordinate. To stabilize the phase imbalance in the output quadrature signals of the sensor, we propose to calculate and optimize the parameters of these gratings, based not only on the energetic analysis, but along with phase relationships in diffraction orders. The optimization method is based on rigorous coupled-wave analysis simulation of the phase shifts of light in diffraction orders in the optical system. The phase properties of the reference diffraction grating in the interferential sensor are studied. It is confirmed that the possibility of quadrature modulation depends on parameters of static reference scale. The implemented optimization criteria are formulated in accordance with the signal generation process in the optical branch. Phase imbalance and amplification coefficients are derived from Heydemann elliptic correction and expressed through the diffraction efficiencies and phase retardations of the reference scale. The phase imbalance of the obtained quadrature signals is estimated in ellipticity correction terms depending on the uncertainties of influencing parameters.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3