Abstract
Magnetic resonance (MR) images are often corrupted by Rician noise which degrades the accuracy of image-based diagnosis tasks. The nonlocal means (NLM) method is a representative filter in denoising MR images due to its competitive denoising performance. However, the existing NLM methods usually exploit the gray-level information or hand-crafted features to evaluate the similarity between image patches, which is disadvantageous for preserving the image details while smoothing out noise. In this paper, an improved nonlocal means method is proposed for removing Rician noise in MR images by using the refined similarity measures. The proposed method firstly extracts the intrinsic features from the pre-denoised image using a shallow convolutional neural network named Laplacian eigenmaps network (LEPNet). Then, the extracted features are used for computing the similarity in the NLM method to produce the denoised image. Finally, the method noise of the denoised image is utilized to further improve the denoising performance. Specifically, the LEPNet model is composed of two cascaded convolutional layers and a nonlinear output layer, in which the Laplacian eigenmaps are employed to learn the filter bank in the convolutional layers and the Leaky Rectified Linear Unit activation function is used in the final output layer to output the nonlinear features. Due to the advantage of LEPNet in recovering the geometric structure of the manifold in the low-dimension space, the features extracted by this network can facilitate characterizing the self-similarity better than the existing NLM methods. Experiments have been performed on the BrainWeb phantom and the real images. Experimental results demonstrate that among several compared denoising methods, the proposed method can provide more effective noise removal and better details preservation in terms of human vision and such objective indexes as peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献