Improved Reconstruction of MR Scanned Images by Using a Dictionary Learning Scheme

Author:

Ikram ,Shah ,Zubair ,Qureshi ORCID,Bilal

Abstract

The application of compressed sensing (CS) to biomedical imaging is sensational since it permits a rationally accurate reconstruction of images by exploiting the image sparsity. The quality of CS reconstruction methods largely depends on the use of various sparsifying transforms, such as wavelets, curvelets or total variation (TV), to recover MR images. As per recently developed mathematical concepts of CS, the biomedical images with sparse representation can be recovered from randomly undersampled data, provided that an appropriate nonlinear recovery method is used. Due to high under-sampling, the reconstructed images have noise like artifacts because of aliasing. Reconstruction of images from CS involves two steps, one for dictionary learning and the other for sparse coding. In this novel framework, we choose Simultaneous code word optimization (SimCO) patch-based dictionary learning that updates the atoms simultaneously, whereas Focal underdetermined system solver (FOCUSS) is used for sparse representation because of a soft constraint on sparsity of an image. Combining SimCO and FOCUSS, we propose a new scheme called SiFo. Our proposed alternating reconstruction scheme learns the dictionary, uses it to eliminate aliasing and noise in one stage, and afterwards restores and fills in the k-space data in the second stage. Experiments were performed using different sampling schemes with noisy and noiseless cases of both phantom and real brain images. Based on various performance parameters, it has been shown that our designed technique outperforms the conventional techniques, like K-SVD with OMP, used in dictionary learning based MRI (DLMRI) reconstruction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3