Toward a Unified TreeTalker Data Curation Process

Author:

Tomelleri EnricoORCID,Belelli Marchesini LucaORCID,Yaroslavtsev AlexeyORCID,Asgharinia ShahlaORCID,Valentini RiccardoORCID

Abstract

The Internet of Things (IoT) development is revolutionizing environmental monitoring and research in macroecology. This technology allows for the deployment of sizeable diffuse sensing networks capable of continuous monitoring. Because of this property, the data collected from IoT networks can provide a testbed for scientific hypotheses across large spatial and temporal scales. Nevertheless, data curation is a necessary step to make large and heterogeneous datasets exploitable for synthesis analyses. This process includes data retrieval, quality assurance, standardized formatting, storage, and documentation. TreeTalkers are an excellent example of IoT applied to ecology. These are smart devices for synchronously measuring trees’ physiological and environmental parameters. A set of devices can be organized in a mesh and permit data collection from a single tree to plot or transect scale. The deployment of such devices over large-scale networks needs a standardized approach for data curation. For this reason, we developed a unified processing workflow according to the user manual. In this paper, we first introduce the concept of a unified TreeTalker data curation process. The idea was formalized into an R-package, and it is freely available as open software. Secondly, we present the different functions available in “ttalkR”, and, lastly, we illustrate the application with a demonstration dataset. With such a unified processing approach, we propose a necessary data curation step to establish a new environmental cyberinfrastructure and allow for synthesis activities across environmental monitoring networks. Our data curation concept is the first step for supporting the TreeTalker data life cycle by improving accessibility and thus creating unprecedented opportunities for TreeTalker-based macroecological analyses.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3