Abstract
With the tremendous increase of heterogeneous Internet of Things (IoT) devices and the different service requirements of these IoT applications, machine-type communication (MTC) has attracted considerable attention from both industry and academia. Owing to the prominent advantages of supporting pervasive connectivity and wide area coverage, the cellular network is advocated as the potential wireless solution to realize IoT deployment for MTC, and this creative network paradigm is called the cellular IoT (C-IoT). In this paper, we propose the three-layer structured C-IoT architecture for MTC and review the challenges for deploying green C-IoT. Then, effective strategies for realizing green C-IoT are presented, including the energy efficient and energy harvesting schemes. We put forward several strategies to make the C-IoT run in an energy-saving manner, such as efficient random access and barring mechanisms, self-adapting machine learning predictions, scheduling optimization, resource allocation, fog computing, and group-oriented transmission. As for the energy harvesting schemes, the ambient and dedicated energy harvesting strategies are investigated. Afterwards, we give a detailed case study, which shows the effectiveness of reducing power consumption for the proposed layered C-IoT architecture. Additionally, for real-time and non-real-time applications, the power consumption of different on-off states for MTC devices is discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献