Abstract
An atomic force microscope (AFM) was applied to study of the adsorption of xanthate on bornite surfaces in situ in aqueous solutions. AFM images showed that xanthate, i.e., potassium ethyl xanthate (KEX) and potassium amyl xanthate (PAX), adsorbed strongly on bornite, and the adsorbate bound strongly with the mineral surface without being removed by flushing with ethanol alcohol. The AFM images also showed that the adsorption increased with the increased collector concentration and contact time. Xanthate adsorbed on bornite in a similar manner when the solution pH changed to pH 10. The AFM force measurement results showed that the probe–substrate adhesion increased due to the adsorption of xanthate on bornite. The sharp “jump-in” and “jump-off” points on force curve suggest that the adsorbate is not “soft” in nature, ruling out the existence of dixanthogen, an oily substance. Finally, the ATR-FTIR (attenuated total reflection-Fourier-transform infrared) result confirms that the adsorbate on bornite in xanthate solutions is mainly in the form of insoluble cuprous xanthate (CuX) instead of dixanthogen. This xanthate/bornite adsorption mechanism is very similar to what is obtained with the xanthate/chalcocite system, while it is different from the xanthate/chalcopyrite system, for which oily dixanthogen is the main adsorption product on the chalcopyrite surface. The present study helps clarify the flotation mechanism of bornite in industry practice using xanthate as a collector.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献