AFM Image Analysis of the Adsorption of Xanthate and Dialkyl Dithiophosphate on Chalcocite

Author:

Zhang Jinhong,Zhang Wei

Abstract

Atomic force microscopy (AFM) has been applied to study the adsorption morphology of various collectors, i.e., potassium ethyl xanthate (KEX) and potassium amyl xanthate (PAX) and Cytec Aerofloat 238 (sodium dibutyl dithiophosphate), on chalcocite in situ in aqueous solutions. The AFM images show that all these collectors adsorb strongly on chalcocite. Xanthate adsorbs mainly in the form of insoluble cuprous xanthate (CuX), which binds strongly with the mineral surface without being removed by flushing with ethanol alcohol. This xanthate/chalcocite adsorption mechanism is very similar to the one obtained with the xanthate/bornite system; while it is different from the one of the xanthate/chalcopyrite systems, for which oily dixanthogen is the main adsorption product on chalcopyrite surface. On the other hand, dibutyl dithiophosphate adsorbs on chalcocite in the form of hydrophobic patches, which can be removed by rinsing with ethanol alcohol. AFM images show that the adsorption of collectors increases with increasing adsorption time and collectors’ concentration. In addition, increasing the solution pH to 10 does not prevent the adsorption of xanthate and Aerofloat 238 on chalcocite and the result is in line with the fact that chalcocite floats well in a wide pH range up to 12 with xanthate and dialkyl dithiophosphate being used as collectors. The blending collectors study shows that xanthate and dialkyl dithiophosphate can co-adsorb with both insoluble cuprous xanthate and oily Cu(DTP)2 (Cu dibutyl dithiophosphate) on a chalcocite surface. The present study helps to clarify the flotation mechanism of chalcocite in industry practice using xanthate and dialkyl dithiophosphate as collectors.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3