Modeling and Simulation of Dissemination of Cultivated Land Protection Policies in China

Author:

Lu Xinhai,Zhang YanweiORCID,Tang Handong

Abstract

Cultivated land protection is the top priority of the national economy in China and the livelihood of people. Cultivated land protection policies (CLPP) play an important role in the protection of cultivated land. However, the process of dissemination of CLPP on social networks of farmers has problems, such as distortion of policy content, single dissemination channels, low level of farmers’ knowledge, and low dissemination efficiency. For revealing the characteristics of the dissemination of CLPP in the farmers’ social networks (FSN), this study combines the Suspected–Exposed–Infected–Recovered–Suspected (SEIRS) epidemic model to construct a model of CLPP dissemination suitable for FSN. In addition, a numerical simulation of the dissemination process of CLPP is conducted on the FSN, and the influence of the structural characteristics of the FSN and different model parameters on the dissemination of CLPP is analyzed. Results show that (1) the dissemination rate between farmers in FSN has a significant impact on the scale and speed of CLPP. A greater initial dissemination rate corresponds to faster speed and larger scale of CLPP dissemination. (2) A greater node degree in FSN means stronger dissemination ability for CLPP. Therefore, identifying structural holes (opinion leaders) in FSN can effectively promote the dissemination of CLPP. (3) The SEIRS model can dynamically describe the evolution law of CLPP dissemination process over time through the four states of farmer nodes of suspected, exposed, infected, and recovered. Numerical simulation results show that the immune degradation rate is proportional to CLPP. However, the direct immunization rate is inversely proportional. The increase in immune degradation rate can reduce the number of recovered farmers and improve the efficiency of CLPP dissemination. On the basis of the abovementioned conclusions, this study draws policy recommendations to increase the scale and speed of CLPP dissemination in China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3