An Alternative to Chlorobenzene as a Hole Transport Materials Solvent for High-Performance Perovskite Solar Cells

Author:

Lee Seung Ho1,Lim Seong Bin2,Kim Jin Young1,Lee Seri2,Oh Se Young2,Kim Gyu Min1ORCID

Affiliation:

1. Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University, Anseong 17579, Republic of Korea

2. Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea

Abstract

Spiro-OMeTAD is a widely used hole-transporting layer (HTL) material, characterized by high hole mobility and good film-forming properties, in perovskite solar cells (PSCs). However, this material has high synthesis costs, low solubility, dependence on hygroscopic dopants, and a low commercial potential. Recently, we investigated alternative materials with good solubility, simple synthetic methods, and good electrical characteristics for use as hole transport materials (HTM) in triple-cation PSCs. Herein, (E,E,E,E)-4,4′,4″,4′″-[Benzene-1,2,4,5-tetrayltetrakis(ethene-2,1-diyl)]tetrakis[N,N-bis(4-methoxyphenyl)aniline], which has a small molecular weight and similar properties to Spiro-OMeTAD, was assessed for use as a HTM via a pre-test of device performance, including its electrical properties, surface morphology, and coating process method, with PSC efficiencies routinely surpassing 20%. A remarkable open-circuit voltage of 1.111, along with a photovoltaic efficiency of 20.18% was obtained in PSCs using this HTM with dichloromethane (DCM) instead of chlorobenzene, indicative of its potential for the fabrication of resistance components with improved surface uniformity. These results provide insights into DCM as an efficient solvent for small molecule-based HTM.

Funder

Hankyong National University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3