Affiliation:
1. Nanotechnology and Advanced Materials Laboratory, Electrical and Computer Engineering Department, University of the Peloponnese, 26334 Patras, Greece
Abstract
Perovskite solar cells (PSCs) have revolutionized the field of photovoltaics, achieving certified power conversion efficiencies reaching 26% at the laboratory scale. High performance, enhanced stability, and long lifetime are prerequisites for the industrialization and commercialization of this class of third-generation photovoltaic technology. Toward the development of well-performing and robust PSCs against environmental stresses, advanced engineering strategies have been employed, targeting the preparation of perovskite absorbing layers with minimal defects and energy-level fine-tuning hydrophobic contacts. Focusing on both the electron transport layer/perovskite and perovskite/hole transport layer interfaces, this review work encompasses some of the most promising engineering methodologies that were recently proposed in order to optimize the device architecture. Machine learning approaches have also been used to validate experimental data and predict with accuracy solar cell parameters, further confirming the significance and justifying the application potential of the proposed innovative interface functionalization approaches.
Funder
Hellenic Foundation for Research and Innovation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering