Optimization of Wire EDM Process Parameters for Machining Hybrid Composites Using Grey Relational Analysis

Author:

Jebarose Juliyana Sunder1,Udaya Prakash Jayavelu1ORCID,Rubi Charles Sarala2,Salunkhe Sachin1ORCID,Gawade Sharad Ramdas3,Abouel Nasr Emad S.4ORCID,Kamrani Ali K.5

Affiliation:

1. Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

2. Department of Physics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

3. Sharadchandra Pawar, College of Engineering and Technology, Someshwar, Baramati 412306, India

4. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

5. Department of Industrial Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA

Abstract

The materials used in engineering have seen a significant transformation in the contemporary world. Numerous composites are employed to overcome these problems because conventional materials are unable to meet the needs of current applications. For quite some time, professional engineers and researchers have been captivated by the problem of choosing the best machining parameters for new composite materials. Wire electrical discharge machining is a popular unconventional machining process that is often used for making complex shapes. Numerous process parameters influence the WEDM process. Thus, to achieve affordable and high-quality machining, the right set of process parameters must be provided. Finding the wire cut EDM optimized settings for the fabricated LM5/ZrO2/Gr composite is the main aim of this research. The chosen input parameters are the wire feed, pulse on and pulse off times, the gap voltage, and the reinforcing percentage. In this study, LM5/ZrO2/Gr composites were made from stir casting with 6-weight percent ZrO2 as the reinforcement and varying graphite percentages of 2, 3, and 4 wt%. Then they were machined in WEDM using L27 OA to seek the best parameters for machining by adjusting the input parameters. The findings were analysed by means of grey relation analysis (GRA) to achieve the supreme material removal rate (MRR), lowest surface roughness (SR), and a smaller kerf width (Kw) simultaneously. GRA determines the impact of the machining variables on the standard characteristics and tests the impact of the machining parameters. Confirmation experiments were performed finally to acquire the best findings. The experimental findings and GRA show that the ideal process conditions for achieving the highest grey relational grade (GRG) are 6% ZrO2 with 2% graphite reinforcement, a wire feed of 6 m/min, a pulse off time (Toff) of 40 µs, a pulse on time (Ton) of 110 µs, and a gap voltage (GV) of 20 V. The gap voltage (22.87%) has the greatest impact on the GRG according to analysis of variance (ANOVA), subsequent to the interaction between the pulse on time and the gap voltage (16.73%), pulse on time (15.28%), and pulse off time (14.42%). The predicted value of the GRG is 0.679; however, the experimental GRG value is 0.672. The values are well-aligned between the expected and the experimental results. The error is only 3.29%, which is really little. Finally, mathematical models were created for each response.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3