Mechanical Characterization and Microstructural Analysis of Stir-Cast Aluminum Matrix Composites (LM5/ZrO2)

Author:

Prakash Jayavelu1ORCID,Jebarose Juliyana Sunder1,Salunkhe Sachin1ORCID,Gawade Sharad2ORCID,Nasr Emad3ORCID,Kamrani Ali4

Affiliation:

1. Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

2. Sharadchandra Pawar, College of Engineering and Technology, Someshwar, Baramati 412306, India

3. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

4. Department of Industrial Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA

Abstract

Aluminum matrix composites (AMCs) are largely used in defense, maritime, and space applications for their excellent properties. LM5 is used where very high resistance to corrosion from seawater or marine atmospheres is required, for equipment used for the manufacture of foodstuffs, cooking utensils, and chemical plants. Zirconia is preferred over other reinforcements as it shows comparatively great refractory properties, high scratch resistance, and thermal shock resistance. Utilizing the stir casting technique, an attempt was made to produce AMCs of LM5 aluminum alloy strengthened with ZrO2. The weight percentage of ZrO2 was changed to 0%, 3%, 6%, and 9%. The specimens were prepared and tested as per ASTM standards to find the density, micro and macro hardness, impact, tensile, and compressive strength. The micrographs and SEM images confirm the uniform distribution of ZrO2 particles in the aluminum matrix. LM5/9%ZrO2 AMC has the highest density value of 2.83 g/cm3 and LM5/3%ZrO2 has the least porosity of 2.55%. LM5/9% ZrO2 has the highest hardness values of 78 VHN and 72 HRE. LM5/6% ZrO2 AMC has the highest tensile strength of 220 MPa, compressive strength of 296 MPa, and toughness of 12 J. LM5/6% ZrO2 AMCs may be used for many structural applications.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3