L-Glutamine Coating on Antibacterial Cu Surface by Density Functional Theory

Author:

Bouri Maria1,Lekka Christina1

Affiliation:

1. Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

Abstract

The protection of implant surfaces from biofilm and corrosion is crucial for osteogenesis and tissue engineering. To this end, an L-glutamine-based green corrosion inhibitor with recently established anticancer properties has been applied onto antibacterial Cu(111) surfaces that usually cover the Ti-based implants. Among several configurations, L-glutamine prefers the parallel to the surface orientation with the carbon chain along the [110] direction having the heteroatoms N and O atoms on top of Cu surface atoms, which is important for the creation of a planar two-dimensioned (2d) stable coating. L-glutamine forms well-localized, directional covalent-like bonded states (below −3 eV) with the Cu surface atoms, using mainly its backbone’s N1 atom that interestingly also shows electron charge occupation in the single-molecule highest occupied state, denoting its ability as an active center. The Mulliken analysis shows charge transfer from the molecule’s N, C and Cu neighboring atoms towards the O atoms revealing the strong bond tendency of L-glutamine and therefore its ability to act as a corrosion inhibitor on the Cu surface. Additional L-glutamine adsorption results in intermolecular covalent bonding between the molecules, proving the ability of this amino acid to form a stable protective 2d organic coating on Cu(111). These results could be used for the design of a multifunctional hybrid (organic–metallic) coating with anticorrosion, anticancer and antibacterial properties suitable for many technological applications.

Funder

European Commission within the H2020-MSCA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3