Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study

Author:

Papantoniou-Chatzigiosis Stefanos1,Galani Athina C.1,Fylaktopoylou Dimitra1,Kourti Christina1,Mosxou Androniki1,Nousia Maria E.12ORCID,Anthopoulos Thomas34,Lidorikis Elefterios1ORCID,Lekka Christina E.1

Affiliation:

1. Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

2. Department of Chemistry, University of Torino, 10124 Torino, Italy

3. PSE Division, King Abdullah University of Science and Technology (KAUST), Jidda 23955-6900, Saudi Arabia

4. Henry Royce Institute, Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK

Abstract

Coatings with tunable multifunctional features are important for several technological applications. Ti-based materials have been used in diverse applications ranging from metallic diodes in electronic devices up to medical implants. This work uses ab initio calculations to achieve a more fundamental understanding of the structural and electronic properties of β-TiNb and its passive TiO2 film surfaces upon Ag addition, investigating the alterations in the electronic band gap and the stability of the antibacterial coating. We find that Ag’s 4d electrons introduce localized electron states, characterized by bonding features with the favoured Ti first neighbour atoms, approximately −5 eV below the fermi level in both β-TiNb bulk and surface. Ag’s binding energy on β-TiNb(110) depends on the local environment (the lattice site and the type of bonded surface atoms) ranging from −2.70 eV up to −4.21 eV for the adatom on a four-fold Ti site, offering a variety of options for the design of a stable coating or for Ag ion release. In Ti–O terminated anatase and rutile (001) surfaces, surface states are introduced altering the TiO2 band gap. Silver is bonded more strongly, and therefore creates a more stable antibacterial coat on rutile than on anatase. In addition, the Ag coating exhibits enhanced 4d electron states at the highest occupied state on anatase (001),which are extended from −5 eV up to the Fermi level on rutile (001), which might be altered depending on the coat structural features, thus creating systems with tunable electronic band gap that can be used for the design of thin film semiconductors.

Funder

Bioremia Project

LASEMAL Project (King Abdullah University of Science and Technology (KAUST)) Office of Sponsored Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3