Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol

Author:

Gorbunova Marina1ORCID,Anokhin Denis V.1ORCID,Abukaev Ainur1ORCID,Ivanov Dimitri1ORCID

Affiliation:

1. Laboratory of Structural Methods of Materials Investigation, National University of Science and Technology MISIS, Leninskiy Prospekt 4s1, 119049 Moscow, Russia

Abstract

In this work, we explore the influence of soft segment structure on the crystallinity and phase separation of semicrystalline multi-block thermoplastic polyurethanes (TPUs) based on poly(butylene adipate) diol, polycaprolactone diol, and their mixture. According to thermal and structural analyses, the crystal growth rate and degree of crystallinity decrease with an increase in the PCL/PBA ratio and reach a minimum at the equimolar composition of polyesters. A reduction in crystal phase content leads to an improvement in elastomeric behavior. TPU samples with high PCL content demonstrate enhanced crystallinity but a lower melting temperature compared to TPU with PBA crystals. Crystallization of TPU below room temperature results in an enhancement of total crystallinity and a change in the phase composition of the PBA block. The difference in semicrystalline morphology and crystallization kinetics can be explained by the efficiency of phase separation and the density of hydrogen bonding between soft and hard segments. Our findings show that the ratio of the two crystallizable polyesters, combined with the choice of crystallization temperature, allows for independent control over the melting temperature and the overall degree of crystallinity of the TPUs. This significantly impacts the mechanical characteristics of the materials. The effect of adding a second crystallizable polyester on the crystallization behavior, phase composition, and mechanical properties of TPU is discussed for the first time.

Funder

strategic academic leadership program «Priority 2030»

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3