Effect of Geometrical Confinement on Ordering of Thermoplastic Polyurethanes with Crystallizable Hard and Soft Blocks

Author:

Abukaev Ainur F.1ORCID,Gorbunova Marina A.1ORCID,Anokhin Denis V.1,Ivanov Dimitri A.1

Affiliation:

1. Laboratory of Structural Methods of Materials Investigation, National University of Science and Technology MISIS, Leninskiy Prospekt 4, 119049 Moscow, Russia

Abstract

A series of multi-block thermoplastic polyurethanes incorporating different soft block structures was synthesized. This was achieved using a poly(butylene adipate) oligomer combined with its macrodiols of both an aromatic and aliphatic nature. The composition of the hard block included 1,6-hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and 1,4-butanediol. For the first time, the structural evolution and phase composition of both the hard and soft segments were analyzed during in situ thermal treatments. A combination of synchrotron small- and wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy was used to determine the influence of the macrodiol’s nature and crystallization conditions on the polymorphic behavior of poly(butylene adipate). Using a new synthesis scheme, a relatively high degree of crystallinity for urethane blocks was achieved, which depended on the diisocyanate type in the structure of the soft segment. The hard segment domains imposed geometrical constraints on poly(butylene adipate), thereby altering its crystallization process compared to the neat oligomer. Thus, crystallization after annealing at a low temperature (80 °C) was fast, predominantly yielding a metastable β-phase. When heated to 180 °C, which was higher than the hard segment’s melting temperature, a phase-separated structure was observed. Subsequent crystallization was slower, favoring the formation of the stable α-PBA modification. The phase separation could be observed even after the hard block melting. Notably slow crystallization from an isotropic melt was documented after the disruption of phase separation at 230 °C.

Funder

strategic academic leadership program “Priority 2030”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3