Wafer-Scale Emission Energy Modulation of Indium Flushed Quantum Dots

Author:

Spitzer Nikolai1,Bart Nikolai1,Babin Hans-Georg1,Schmidt Marcel1,Wieck Andreas D.1,Ludwig Arne1ORCID

Affiliation:

1. Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany

Abstract

Semiconductor self-assembled quantum dots (QDs) have garnered immense attention for their potential in various quantum technologies and photonics applications. Here, we explore a novel approach for fine-tuning the emission wavelength of QDs by building upon the indium flush growth method: Submonolayer variations in the capping thickness reveal a non-monotonic progression, where the emission energy can decrease even though the capping thickness decreases. indium flush, a well-known technique for inducing blue shifts in quantum dot emissions, involves the partial capping of QDs with GaAs followed by a temperature ramp-up. However, our findings reveal that the capping layer roughness, stemming from fractional monolayers during overgrowth, plays a pivotal role in modulating the emission energy of these QDs. We propose increased indium interdiffusion between the QDs and the surrounding GaAs capping layer for a rough surface surrounding the QD as the driving mechanism. This interdiffusion alters the indium content within the QDs, resulting in an additional emission energy shift, counterintuitive to the capping layer’s thickness increase. We utilize photoluminescence spectroscopy to generate wafer maps depicting the emission spectrum of the QDs. Using thickness gradients, we produce systematic variations in the capping layer thickness on 3″ wafers, resulting in modulations of the emission energy of up to 26 meV.

Funder

DFH/UFA

DFG

EU Horizon 2020

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference33 articles.

1. A bright and fast source of coherent single photons;Tomm;Nat. Nanotechnol.,2021

2. (2023, October 13). The Nobel Prize in Chemistry 2023. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. Available online: https://www.nobelprize.org/prizes/chemistry/2023/summary/.

3. Charge noise and spin noise in a semiconductor quantum device;Kuhlmann;Nat. Phys.,2013

4. 1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C;Shchekin;Appl. Phys. Lett.,2002

5. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes;Newell;IEEE Photonics Technol. Lett.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3