Use of X-ray Microscopy for Confirmation of Crystallinity Detection in Amorphous Formulations by Electrospray Laser Desorption Ionization Mass Spectrometry Imaging

Author:

Ramp Kelsey K.1,Dierckman Noah R.1,Sperry Margaret A.1,Reuter Matthew E.1,Tang Yongan2ORCID,Webster Gregory K.2,McVey Patrick A.1

Affiliation:

1. Department of Chemistry and Physical Sciences, Marian University, Indianapolis, IN 46222, USA

2. AbbVie Inc., North Chicago, IL 60064, USA

Abstract

The use of mass spectrometry imaging for crystallinity detection offers improved matrix selectivity and sensitivity over the techniques, such as X-ray microscopy and Raman spectrometry, that are traditionally used with this work. Crystallinity is observed in electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) as a high-intensity agglomeration of the analyte in a spatially resolved image. As this is an indirect method of crystallinity detection, confirmation of this method’s ability to detect crystallization in amorphous formulations is needed by directly correlating observations of tablet crystallinity by ELDI-MSI to those of an established detection technique. Micro-computed tomography (micro-CT) has the necessary sensitivity for this investigation and is ideal for use in evaluating the correlation with crystallinity detection by ELDI-MSI. In this work, micro-CT followed by ELDI-MSI, in the same location on tablets of amorphous formulations of miconazole spiked with trace levels of crystalline miconazole, were analyzed. Crystals detected by ELDI-MSI as an agglomeration spatially matched with the detected crystals but were chemically unidentified by micro-CT. The results of this correlation study and a conclusion about the effectiveness of ELDI-MSI as a complimentary technique to indirectly detect crystallinity in enabling formations of an amorphous API are presented.

Funder

AbbVie Inc.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3