Boundary-Assisted Learning for Building Extraction from Optical Remote Sensing Imagery

Author:

He ShengORCID,Jiang WanshouORCID

Abstract

Deep learning methods have been shown to significantly improve the performance of building extraction from optical remote sensing imagery. However, keeping the morphological characteristics, especially the boundaries, is still a challenge that requires further study. In this paper, we propose a novel fully convolutional network (FCN) for accurately extracting buildings, in which a boundary learning task is embedded to help maintain the boundaries of buildings. Specifically, in the training phase, our framework simultaneously learns the extraction of buildings and boundary detection and only outputs extraction results while testing. In addition, we introduce spatial variation fusion (SVF) to establish an association between the two tasks, thus coupling them and making them share the latent semantics and interact with each other. On the other hand, we utilize separable convolution with a larger kernel to enlarge the receptive fields while reducing the number of model parameters and adopt the convolutional block attention module (CBAM) to boost the network. The proposed framework was extensively evaluated on the WHU Building Dataset and the Inria Aerial Image Labeling Dataset. The experiments demonstrate that our method achieves state-of-the-art performance on building extraction. With the assistance of boundary learning, the boundary maintenance of buildings is ameliorated.

Funder

National Natural Science Foundation of China

Major Project of High Resolution Earth Observation Systems

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3