Abstract
Hyperspectral imaging (HSI) has been widely investigated within the context of computational imaging due to the high dimensional challenges for direct imaging. However, existing computational HSI approaches are mostly designed for the visible to near-infrared waveband, whereas less attention has been paid to the mid-infrared spectral range. In this paper, we report a novel mid-infrared compressive HSI system to extend the application domain of mid-infrared digital micromirror device (MIR-DMD). In our system, a modified MIR-DMD is combined with an off-the-shelf infrared spectroradiometer to capture the spatial modulated and compressed measurements at different spectral channels. Following this, a dual-stage image reconstruction method is developed to recover infrared hyperspectral images from these measurements. In addition, a measurement without any coding is used as the side information to aid the reconstruction to enhance the reconstruction quality of the infrared hyperspectral images. A proof-of-concept setup is built to capture the mid-infrared hyperspectral data of 64 pixels × 48 pixels × 100 spectral channels ranging from 3 to 5 μm, with the acquisition time within one minute. To the best of our knowledge, this is the first mid-infrared compressive hyperspectral imaging approach that could offer a less expensive alternative to conventional mid-infrared hyperspectral imaging systems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
China Postdoctoral Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献