Mid-Wave Infrared Snapshot Compressive Spectral Imager with Deep Infrared Denoising Prior

Author:

Yang Shuowen,Qin Hanlin,Yan XiangORCID,Yuan Shuai,Zeng QingjieORCID

Abstract

Although various infrared imaging spectrometers have been studied, most of them are developed under the Nyquist sampling theorem, which severely burdens 3D data acquisition, storage, transmission, and processing, in terms of both hardware and software. Recently, computational imaging, which avoids direct imaging, has been investigated for its potential in the visible field. However, it has been rarely studied in the infrared domain, as it suffers from inconsistency in spectral response and reconstruction. To address this, we propose a novel mid-wave infrared snapshot compressive spectral imager (MWIR-SCSI). This design scheme provides a high degree of randomness in the measurement projection, which is more conducive to the reconstruction of image information and makes spectral correction implementable. Furthermore, leveraging the explainability of model-based algorithms and the high efficiency of deep learning algorithms, we designed a deep infrared denoising prior plug-in for the optimization algorithm to perform in terms of both imaging quality and reconstruction speed. The system calibration obtains 111 real coded masks, filling the gap between theory and practice. Experimental results on simulation datasets and real infrared scenarios prove the efficacy of the designed deep infrared denoising prior plug-in and the proposed acquisition architecture that acquires mid-infrared spectral images of 640 pixels × 512 pixels × 111 spectral channels at an acquisition frame rate of 50 fps.

Funder

National Natural Science Foundation of China

Science and Technology Project of Xi’an

National Key R & D Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3