An Assessment of the Filling Process of the Grand Ethiopian Renaissance Dam and Its Impact on the Downstream Countries

Author:

Kansara PrakrutORCID,Li WenzhaoORCID,El-Askary HeshamORCID,Lakshmi VenkataramanORCID,Piechota ThomasORCID,Struppa Daniele,Abdelaty Sayed Mohamed

Abstract

The Grand Ethiopian Renaissance Dam (GERD), formerly known as the Millennium Dam, has been filling at a fast rate. This project has created issues for the Nile Basin countries of Egypt, Sudan, and Ethiopia. The filling of GERD has an impact on the Nile Basin hydrology and specifically the water storages (lakes/reservoirs) and flow downstream. In this study, through the analysis of multi-source satellite imagery, we study the filling of the GERD reservoir. The time-series generated using Sentinel-1 SAR imagery displays the number of classified water pixels in the dam from early June 2017 to September 2020, indicating a contrasting trend in August and September 2020 for the upstream/downstream water bodies: upstream of the dam rises steeply, while downstream decreases. Our time-series analysis also shows the average monthly precipitation (derived using IMERG) in the Blue Nile Basin in Ethiopia has received an abnormally high amount of rainfall as well as a high amount of runoff (analyzed using GLDAS output). Simultaneously, the study also demonstrates the drying trend downstream at Lake Nasser in Southern Egypt before December 2020. From our results, we estimate that the volume of water at GERD has already increased by 3.584 billion cubic meters, which accounts for about 5.3% of its planned capacity (67.37 billion cubic meters) from 9 July–30 November 2020. Finally, we observed an increasing trend in GRACE anomalies for GERD, whereas, for the Lake Nasser, we observed a decreasing trend. In addition, our study discusses potential interactions between GERD and the rainfall and resulting flood in Sudan. Our study suggests that attention should be drawn to the connection between the GERD filling and potential drought in the downstream countries during the upcoming dry spells in the Blue Nile River Basin. This study provides an open-source technique using Google Earth Engine (GEE) to monitor the changes in water level during the filling of the GERD reservoir. GEE proves to be a powerful as well as an efficient way of analyzing computationally intensive SAR images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3