Reservoir Induced Deformation Analysis for Several Filling and Operational Scenarios at the Grand Ethiopian Renaissance Dam Impoundment

Author:

Madson AustinORCID,Sheng YongweiORCID

Abstract

Addressing seasonal water uncertainties and increased power generation demand has sparked a global rise in large-scale hydropower projects. To this end, the Blue Nile impoundment behind the Grand Ethiopian Renaissance Dam (GERD) will encompass an areal extent of ~1763.3 km2 and hold ~67.37 Gt (km3) of water with maximum seasonal load changes of ~27.93 (41% of total)—~36.46 Gt (54% of total) during projected operational scenarios. Five different digital surface models (DSMs) are compared to spatially overlapping spaceborne altimeter products and hydrologic loads for the GERD are derived from the DSM with the least absolute elevation difference. The elastic responses to several filling and operational strategies for the GERD are modeled using a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model. The maximum vertical and horizontal flexural responses from the full GERD impoundment are estimated to be 11.99 and 1.99 cm, regardless of the full impoundment period length. The vertical and horizontal displacements from the highest amplitude seasonal reservoir operational scenarios are 38–55% and 34–48% of the full deformation, respectively. The timing and rate of reservoir inflow and outflow affects the hydrologic load density on the Earth’s surface, and, as such, affects not only the total elastic response but also the distance that the deformation extends from the reservoir’s body. The magnitudes of the hydrologic-induced deformation are directly related to the size and timing of reservoir fluxes, and an increased knowledge of the extent and magnitude of this deformation provides meaningful information to stakeholders to better understand the effects from many different impoundment and operational strategies.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Filling the GERD: evaluating hydroclimatic variability and impoundment strategies for Blue Nile riparian countries

2. The Grand Ethiopian Renaissance Dam on the Blue Nile;Abtew,2018

3. Environmental and Hydrological Impacts of Grand Ethiopian Renaissance Dam on the Nile River;Ahmed;Int. Water Technol. J.,2015

4. Evaluation of multi-storage hydropower development in the upper Blue Nile River (Ethiopia): regional perspective

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3