Passive Remote Sensing of Ice Cloud Properties at Terahertz Wavelengths Based on Genetic Algorithm

Author:

Liu Lei,Weng ChensiORCID,Li Shulei,Husi LetuORCID,Hu Shuai,Dong Pingyi

Abstract

Ice clouds play a critical role in the balance of the earth–atmosphere radiation system, but there are some limitations in the existing remote sensing methods for ice clouds. Terahertz wave is expected to be the best waveband for retrieving ice clouds, with terahertz wavelengths in the order of the size of typical ice cloud particles. An inversion method for the remote sensing of ice clouds at terahertz wavelengths based on genetic algorithm is proposed in this paper. First, suitable channel sets in the terahertz band, which are mainly a combination of absorption lines and window regions, are determined. Then, to improve the efficiency of the generation of the retrieval database, based on the brightness temperature simulated by the atmospheric radiative transfer simulator (ARTS) for different cloud parameters, a fast forward operator is constructed using three-dimensional interpolation to simulate the brightness temperature difference between clear sky and a cloudy scene. Finally, an inversion model to retrieve the ice cloud base height, the effective particle diameter and the ice water path is established based on the genetic algorithm, and an analysis of the inversion errors is performed. The results show that the forward operator, constructed by the nearest interpolation, can accurately calculate the brightness temperature difference at a high speed. The proposed inversion method at terahertz wavelengths based on the genetic algorithm can achieve the expected scientific requirement. The absolute error of the cloud height is around 0.2 km, and the absolute error of the low ice water path (below 20 g/m2) is small, while the relative error of the high ice water path is generally maintained at around 10%, and the absolute error of the effective particle diameter is mostly around 4 μm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3